Physical Characteristic of Glucose Syrup From Gracilaria sp.
How to cite (AJARCDE) :
The growing gap between domestic sugar production and consumption in Indonesia suggests that there are alternative carbohydrate sources beyond sugarcane. Seaweed Gracilaria sp. represents a promising renewable biomass due to its high cellulose content; however, its rigid lignocellulosic matrix limits enzymatic conversion efficiency. This study examines the physical characteristics of glucose syrup produced from Gracilaria sp. via microwave-assisted inorganic salt pretreatment, followed by cellulolytic hydrolysis with Viscozyme® L. The glucose syrup was assessed for yield, ash content, and total dissolved solids (TDS) based on standard analytical protocols. The results indicate that the pretreatment successfully enhanced enzymatic accessibility, yielding glucose syrup with physical properties comparable to conventional sweeteners used in food applications. These findings highlight the potential of Gracilaria spp. as a sustainable raw material for sweetener production and reinforce the importance of physical characterisation as a determinant of product stability and compliance with food quality standards.
Contribution to Sustainable Development Goals (SDGs):
SDG 2: Zero Hunger
SDG 9: Industry, Innovation, and Infrastructure
SDG 12: Responsible Consumption and Production
SDG 14: Life Below Water
[1] Abid, A. R., Mailhiot, M., Boudjemia, N., Pelimanni, E., Milosavljevi?, A. R., Saak, C. M., & Patanen, M. (2021). The effect of relative humidity on CaCl2 nanoparticles studied by soft X-ray absorption spectroscopy. RSC advances, 11(4), 2103-2111.
[2] Agustina, T., Elsyana, V., Alvita, L. R., Ramandani, A. A., & Purnani, M. S. (2024). Characteristics of Liquid Sugar from Cassava Flour Using Gelatinization, Liquefaction and Enzymatic Saccharification (Amyloglucosidase and ?-Amylase) Processes. Walisongo Journal of Chemistry, 7(1), 37-49.
[3] Baghel, R. S., Reddy, C. R. K., & Singh, R. P. (2021). Seaweed-based Cellulose: Applications, and Future Perspectives. Carbohydrate Polymers, 267, 118241. doi:10.1016/j.carbpol.2021.118241
[4] Bhardwaj, N., Kumar, B., & Verma, P. (2020). Microwave-assisted Pretreatment Using Alkali Metal Salt in Combination with Orthophosphoric Acid for Generation of Enhanced Sugar and Bioethanol. Biomass conversion and biorefinery, 1-8.
[5] Chen, X., Li, Y., Wang, J., & Zhang, T. (2024). Calcium sulfate scale: A Review of State-of-The-art. Green Chemical Engineering, 4, 100598.
[6] Chia, K. Y., Yusof, S. J. H. M., & Shamsudin, S. (2024). Optimization of Microwave-Assisted Inorganic Salt Pretreatment for Production of Fermentable Sugars from Spent Coffee Ground. International Journal of Biomass Utilization and Sustainable Energy (IJBUSE), 2.
[7] Fakayode, O. A., Peter, E. E., & Ojoawo, O. O. (2019). Production, Characterization and Modelling of Glucose Syrup Production Process from Selected Agricultural Crops. Agricultural Engineering International: CIGR Journal, 21(2), 127-134.
[8] Fitria, Liu, J., & Yang, B. (2023). Roles of Mineral Matter in Biomass Processing to Biofuels. Biofuels, Bioproducts and Biorefining, 17(3), 696-717.
[9] Harni, M., Putri, S. K., & Handayani, T. D. (2021, May). Characteristics of glucose syrup from various sources of starch. In IOP Conference Series: Earth and Environmental Science (Vol. 757, No. 1, p. 012064). IOP Publishing.
[10] Huo, Y., Li, X., & Xu, Y. (2018). Ion-mediated modification of alginate network and its effect on rheological properties. Food Hydrocolloids, 81, 409–417.
[11] Kim, S. W., Hong, C. H., Jeon, S. W., & Shin, H. J. (2015). High-Yield Production of Biosugars from Gracilaria verrucosa by Acid and Enzymatic Hydrolysis Processes. Bioresource Technology, 196, 634-641.
[12] Konno, H., & Aoyama, C. (2023). Systematic Review on Raphide Morphotype Calcium Oxalate Crystals in Angiosperms. Annals of Botany Plants, 15(4), plad031.
[13] Li, H., & Xu, J. (2013). Optimization of Microwave-Assisted Calcium Chloride Pretreatment of Corn Stover. Bioresource technology, 127, 112-118.
[14] Mardawati, E. 2019. Karakterisasi Produk dan Pemodelan Kinetika Enzimatik ?lfa-Amilase pada Produksi Sirup Glukosa dari Pati Jagung (Zea Mays). Jurnal Industri Pertanian. Vol. 1(1): 11-20.
[15] Moodley, P., & Kana, E. G. (2017). Microwave-Assisted Inorganic Salt Pretreatment of Sugarcane Leaf Waste: Effect on Physiochemical Structure and Enzymatic Saccharification. Bioresource technology, 235, 35-42
[16] Naidoo, J. C., Moodley, P., Sanusi, I. A., Sewsynker-Sukai, Y., Meyer, E. L., & Kana, E. G. (2024). Microwave-Assisted Sequential Geen Liquor-Inorganic Salt Pretreatment for Enhanced Sugar Recovery from Sorghum Leaves Towards Bioethanol and Biohydrogen Production. Renewable Energy, 225, 120225.
[17] Puspitosari, R. R., & Surono, S. (2019). Analisis Faktor–Faktor yang Mempengaruhi Konsumsi dan Produksi Gula Menuju Swasembada Gula 2019. Jurnal Kebijakan Ekonomi, 15(2), 10.
[18] Reski, S., M. E. Mahata, A. Yuniza, and Y. Rizal. Alginate extraction from Turbinaria murayana seaweed as a feed additive for poultry. Adv. Anim. Vet. Sci 13, no. 6 (2025): 1184-1190.
[19] Rogalinski, T., Liu, K., Albrecht, T., & Brunner, G. (2017). Hydrolysis of Lignocellulosic Biomass in Subcritical Water: Influence of Treatment Severity on Composition and Substrate Accessibility. Bioresource Technology, 241, 121–129.
[20] Shokrkar, H., & Ebrahimi, S. (2018). Evaluation of Different Enzymatic Treatment Procedures On Sugar Extraction From Microalgal Biomass, Experimental and Kinetic Study. Energy, 148, 258-268.
[21] Sinuraya, J. F., Suryana, E. A., Shaffitri, L. R., Suharyono, S. R., & Hermawan, H. R. (2024). Kinerja Industri dan Dinamika Kebijakan Komoditas Gula Kristal Putih Nasional. Indonesian Sugar Research Journal, 4(2), 68-79.
[22] Szyde?ko, A., Ferens, W., & Rybak, W. (2022). Effects of calcium, sodium and potassium on ash fusion temperatures of solid recovered fuels (SRF). Waste Management, 150, 161-173.
[23] Terterov, I. N., Koniakhin, S. V., & Bogdanov, A. A. (2022). Specific and Non-Specific Effects of Sodium and Potassium Ions on The Interactions Between Model Charged Groups of Proteins. arXiv preprint arXiv:2208.14934.
[24] Várady, M., Tauchen, J., Klou?ek, P., & Popelka, P. (2022). Effects of total dissolved solids, extraction yield, grinding, and method of preparation on antioxidant activity in fermented specialty coffee. Fermentation, 8(8), 375.
[25] Wang, Y., Zhang, Y., Cui, Q., Feng, Y., & Xuan, J. (2024). Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors. Molecules, 29(10), 2275.
[26] Wu, F. C., Wu, J. Y., Liao, Y. J., Wang, M. Y., & Shih, L. (2014). Sequential Acid and Enzymatic Hydrolysis in Situ and Bioethanol Production from Gracilaria biomass. Bioresource Technology, 156, 123-131.
[27] Zhang, L., Zhao, X., Ding, Z., & Ma, H. (2018). Calcium-Induced Gelation Mechanism of Low-Methoxyl Pectin: Egg-box Model Revisited. Food Hydrocolloids, 75, 164–172.
[28] Zhu, Z., Rezende, C. A., Simister, R., McQueen-Mason, S.J., Macquarrie, D.J., Polikarpov, I., Gomez, L.D. (2016). Efficient Sugar Production From Sugarcane Baggase by Microwave Assisted Acid and Alkali Pretreatment. Biomass. Bioenergi. 93, 269-278.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.